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The refined boundary condition at the inlet of a system has been
formulated with consideration given to the effect of the boundedness
of the volume of the pressurized container; an engineering solution
of the problem is presented with respect to a typical experimental
set-up [1-3].

In the theoretical analysis of a typical experimental
set-up for investigation of the process of convective
diffusion of salts [1-3] it is generally assumed that
the concentration value at the inlet to the system is
constant; in particular, in studying the distillation
process it is assumed that c(0,t) = 0.

Generally speaking, this condition is possible only
in the limiting case in which a solvent is fed to the
system’'s inlet from an infinitely large and thoroughly
mixed pregsurized container. * The distillation of a
finite medium under these circumstances comes about
for two reasons: the discharging solution produces
macrotransport at the outlet face; microtransport occurs
at the inlet face (toward the filtration flow) because of
the diffusion of the salts.

An observer standing at the outlet face of the sys-
tem will clearly be able to establish the difference
between the initial quantity of salts dissolved in the
medium and the amount removed (within an infinite
period of time). The magnitude of this difference has
been evaluated in [3] and can be used to determine the
effective Pe(clet) numbers.

Unlike the real limit condition, constancy of con-
centration at the system's inlet need not be maintained.
Indeed, since the volume of the liquid within the pres-
surized container is finite (and constant, because of
continuous replacement), the diffusion flow from the
medium into the pressurized container changes the
initial zero value of the concentrationto the final value.
During the course of the experiment, the value of the
concentration within the pressurized container will
rise from zero to some maximum value, subsequently
tending toward zero, in proportion to the speed with
which the liquid in the pressurized container is con-
tinuously replaced with pure solvents.

Under these circumstances the dissolved salts dif-
fusing into the pressurized container will obviously
no longer be irreversibly lost to an observer standing
at the outlet face. In the final analysis, such an ob-
server will be able to establish the total quantity of

*Other means of satisfying this condition are pos-
sible. In particular, when the inlet of the system is
streamlined by a liquid of adequate height (to produce
the pressure that is needed), etc.

salts removed from the medium being studied; it is
obvious in this case that the time for the virtually
complete distillation is somewhat greater than in the
limit case in which an infinitely large pressurized
container is used.

Let us formulate the problem. We have a porous
rod filled with a solution of a2 uniform concentration.
A pressurized container filled with a pure solvent
provides a flow of a liquid to the inlet of the system
(the rod). It is assumed that mixing takes place within
the pressurized container; in particular, this can be
accomplished through the continuous inflow of additional
solvent. The outlet face of the rod is in contact with
the air; consequently, there is no diffusion flow there.
The quantity of salt Q(t) removed from the medium is
what we have to measure. Knowing Q(t), we have to
describe the expulsion process.

The distribution of the salts in the rod is described
by the solution of the convective-diffusion equation
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under the following conditions:

C(y: 0)= 1, (2)
c(0, n) = a(n), (3)
a(0)=0, (4)
da _ L de(Om)
~ P {a(”) Pe oy ] : ©)
dac(l, n) _
——#@ 0. (6)

Conditions (2)—(4) and (6) are obvious. Condition
(5) expresses the circumstance that the change in the
amount of salts within the pressurized container is
governed by the difference between the amount of salt
removed from the container by the liquid entering the
rod and the amount diffusing from the rod into the
container. Since the positive direction of the over-all
flow corresponds to the loss a{n), we have chosen the
"minus" sign in (5).

We note that as 8 — 0 (this corresponds to the case
of an infinitely large pressurized container), con-
sidering (4), from condition (5) we have ¢(0,n) = 0,
i.e., a variant considered in [1—-3]. As § — « (this
corresponds to the case of an infinitely small pres-
surized container), we find that ¢(0, n) ~ (1/Pe) x
x 8c(0,n)/8y = 0, i.e., a variant considered in [4].
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For the value of Q(n) of interest to us, we have

Qn) =miS \'}c(l,t)dr. (7)
5

It is not difficult to see that the system of equations
(1)—(6) provides for the complete removal from the
face y = 1 of the salts initially contained within the
rod. Indeed, having integrated Eq. (1) with respect
to y in limits from zero to unity, we obtain

1
_‘ij‘ cly,nydy—+c(l,n)y—c(0,n) =
dn
9

~Looedim L 0On) (8)

With consideration of conditions (2)~(6), let us re-
write Eq. (8) in the form :

c(l, n) =——d—l:

a(n)

B

1
+ Y C(y,n)dy]- (9)
dn .
0

Bearing in mind Eq. (7), we find that
1

Q(ﬁ)=_m18[a—gﬂ+50(y, n)dy] » (10)
Q

n==0
from which
Q) = miS, (11)

which is what we had to prove.

Let us turn to the solution of system (1)~(6). Apply-
ing the Laplace-Carson transform (with respect to
the variable n) to Egs. (1)—(6), we find the solution
for the transformed equation (1) in the form

c_(y,p)=
= 1+4+Aexp [7“—;—‘1 y}—}—Bexp[~—2”%gy] . (12)

Using the transformed conditions (2)—(6), we obtain

B=w+p [oHo+HO—a "+

O A —exp(—ap2Pe] T g
A:B}“‘:jexp (— M), (14)

where
@ (p) = (A —d) + (M4 d)exp(—1), (15)
d=—Pe; b= Pe* | 4Pep . (16)

For the value of ¢(1, p) of interest to us, we find
that

E(l,p):
A +d
(o +Brexp { - ]

=1—2A eP) (P +PB)+2pP[l —exp(—A)] @o

INZHENERNO-FIZICHESKII ZHURNAL

Applying the theorem of operator expansion [5], we
easily find the expression for the preimage of ¢(1,n):

c(l, n) = — 16 Peexp(Pe/2) x

2 f 40} + P -
X (afexp [—— ar4—;~e—e— n}>(4a3+Pe2) %

x | Pe +Pe) +-2Pey: (f) +4&3MJ"X

“ Pe-+2y, (B)
x(cosar)! (18)
where
242
x B = m,
Pr 5 4 (23 4 Pe

g, B =

Pr 1_B»pl‘ = 4 Pe y (19)

while the values of oy are determined from the equa-
tion '
Pe (40} + Pe2)p

Ctg(], = —
! 2a; (4o +Pe*—4Pef)as

(20)

When B8 = 0, we can easily derive the expression
familiar from {2, 3] from formula (18).

Equation (18) is exact. Looking for convenient cal-
culational formulas, let us turn to certain simplifica-
tions and, namely, let us restrict ourselves to a con-
sideration of the case Pe = 2, which is of greatest
practical interest.

Under these circumstances the expression for ¢(p)
can be replaced by the approximate relationship ¢(p) =
=~ A — d and, retaining the adapted degree of accuracy,
we can rewrite Eq. (17) as follows:

w0 [+

e(l,p) =1—22 .
et GrPo—d+zpp Y
Subsequently we find that the relationship
P+PHRr—d>2pp (22)

is valid since § < 1 (for the conditions of the experi-
ment described in [1-3]).

With consideration of the foregoing, we can replace
(21) with the following, retaining extremely high ac-
curacy:

ell, py=c*(1, p) +Ac(l, p), 23)
where
|
exp | — ———
E+(1,p)=1—2h—7172~—, (24)
- 2pexp(Pe/2) p .
Ac(l, p) = 'l F(p), 25
c(l, p) Ve p+p (P (25)

Vpteexpl—V alp+e)
Vp+e+Vey

F(p)=
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(e = Pe/4, o= Pe), (26)

We write the expression for Q(p} in similar fashion:

AP =Q () +AQ), @7

where
T (p) = miSE (1, pYp; (28)
AQ(p)= miSBac(1, pip. (29)

The values of €+ (1, p) and Q' (p) correspondto 8 = 0.

The corresponding preimages were determined earlier
in [3] and have the form

ct(l,n) =

3 Pe P
=]—2exp(2}/ aa){erfc&(T + 5+ _Zf_) —

_Vem
Vo

exp (— V ag )exp (*‘:—n —5;2) -+

1 —
+— exp (—2 V ae) erfc YI} , (30)

n I {
*in) = miS in—{ = ___-_) fc p—
Q*(n) =m {n ( 5 + 5Pe 5 erfc

—exp(2V ae)erick X

Pen? 3Pe Pe%/2 +2Pe— 1
RIS a1t T
4 2 2Pe

+l:nl/Pen n

2

1-4+Pe/2 V~n«] exp (—n?) }

V Pe Vi

o

Let us return to the determination of the correction
factors which describe the effect of the boundedness
of the pressurized container. Let us introduce into
our consideration the tabulated transform [5]:

Vvt . 1 - —_
C Ve, =g} LV ey

— pPVpreepl—V apte) 1 (g3
I P+PE+Vp+e

Having differentiated the preimage corresponding to
the transform in the form of (32), on the basis of b—
and subsequently assuming that b = Ve—we find the
preimage which corresponds to a transform in the
form of (25). Thus we obtain

V PeAc(l,n) _

Jhexp(Per2)
_Ve—B ey e —Val—P)I
RN VRS

{ o —
><erfc[7\/%—1/(e—ﬁ)n}+
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2V n [ «a
+ B l/—n—ﬂ exp (-*U —~en) —
—exp(Vae)2V = +
+eV a 4 2eny & Jerfci— ;2 X
LBy
+ Ve—B)exp(—pn) exp [V ale— Pl X
1. o S
Xerfc[—f‘/ 7+V(s~—[3)n] -
—2eV e exp (V @e) erch} . (33)

Equation (33) can be substantially simplified, since
B < & (=Pe/4). Expanding the quantities within the
braces with respect to 8 (retaining terms to 62 in-
clusively), and omitting the tedious calculations, we
obtain

VTDgAc(l,n) _
2pexp(Pe/2)
V@)
Sy exp (— Bnyerfcn +
-+ -V/_’_l‘exp(._._a- *—En) {gn_l_ M} ——
vV n 4n 2
— [s Ven 4+

+n@2V e +eVa)+ 31(‘; +

-
LA + lu}x
4 8V ¢

x exp(— V ae ) erfct. (34)

For large Pe numbers we can use the simpler expres-
sion

AL ) = BB e (35)
2Pe

Let us now turn fo the determination of AQ(n). First

we rewrite Eq. (29), with consideration of (25), in

the form

AQ(p) =

=2mzs_‘°"‘75%_g2-)—[p(p)

The preimage which corresponds to the second term
in the brackets was cited above. The preimage which
corresponds to the first term is obviously a special
value of the expression known for g = 0.

Omitting the simple but tedious calculations, we
obtain :

—P _F } 36
PR v (36)

AQ(n) = miS[1 —exp(—f n)]erfcn/2 Pe. (37)
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Relationships (35) and (37) are convenient formulas

with which to work. It is curious tonote that the strue-
ture of the correction factors Ac(l,n) and AQ(n) is

entirely analogous to the structure of the correction
factors which describe the effect of skeletal sorption.

Considering (31) and (37), for the complete removal
of the salts over an infinite period of time we find a
value of

Q(o0) = miS(1 — 1/Pe) -+ miS/Pe = miS, ~ (38)

which is exactly equal to the quantity required.

It was demonstrated in [3] that assuming the con-~
dition ¢(0,t) = 0 (see above), the theory leads to com-
plete distillation at n <=2 (Pe > 2), whichisnotalways
in agreement with experiment. The overcoming of
this contradiction necessarily involves consideration
both of the skeletal sorption of the medium (for active
media) and the existence of closed pores. We have
carried out such an analysis in various studies.

In this paper we sought to draw attention to the fact
that for values of 8 not too small even the "classical"
theory of convective diffusion of salts in inert and
homogeneous media makes it possible "to retard" the
distillation process.

Thus, for values of 8 = 10"1—10_2, Pe =~ 10-102’
and n ~ 5-10 for Ac(1, n) we have Ac(i,n) = 10~%-107*
(from an initial value of ¢(x, 0)), which is a completely
measurable quantity denoting the error of the theory
using the condition c¢(0,t) = 0.

In conclusion, let us note that the condition ¢(0,t) =
= 0 will be satisfied exactly for any g if the experi-
ment is set up so as to provide for a sink (at the point
at which the medium under investigation comes into
contact with the pressurized container) or at the point
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at which it comes into contact with a hose that leads

to the pressurized container). The existence of this
sink (naturally offset by the addition of a pure solvent
into the container) makes it possible to regard the
concentration within the container as constant, inview
of the ejection to the outside of the salts being diffused
into the container.

NOTATION

c is the solution concentration in the pore space
of the rod; a is the solution concentration in the pres-
surized container; v is the mean velocity of liquid flow
in pores; D is the diffusion coefficient per unit surface
of pore space; m is the porosity value; [ isthe rod length;
S is the cross sectional area of the body; we is the vol-
ume of the pressurized container; wy = ml8 is the
volume of pore space of the rod; n =vt/l; y =x/I, 8=
= wp/We Pe = vl/D is the amount of liquid flowing out
of the rod, expressed in units of pore space volume.
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